

Validated Cost Models for Sensor Network Queries

Christian Y. A. Brenninkmeijer Ixent Galpin Alvaro A. A. Fernandes, Norman W Paton,

Overview

- Introduction
- Motivation
- Example Distributed Query
- Optimization Goals
- Cost and possible decisions
 - Memory
 - Duration
 - Energy
- Conclusion

- SNEEql Sensor NEtwork Engine query language
- Using Validated Cost Estimation Models allows the compiler to create an Optimal Query Execution Plan

Introduction and Motivation

- Sensor networks can be seen as Distributed databases.
- Distributed Queries don't do the same thing on every site.
- Query Optimizers decide what operations are done where.
- SNEE Optimizer decides when each operation is done including transmission.
- Query Optimizers depend on Cost Models.
- Transmission between sites must also be costed.

School of Computer Science Sensor Networks have Known Input and can be Costed.

Push stream difficult to cost due to an unknown tuple arrival rate.

The University of Manchester

- Sensor network users specify an Acquisition Rate and the sites they want to collect data from.
 - Streams therefore have a known tuples arrival rate
 - Streams, there have a known cardinality per acquisition
- Knowledge of input rate allows queries costed and therefore optimized and adapted.

Example Query

schema: outflow (id,time,temp,pressure) sources: {4,7,9}
inflow (id,time,temp,pressure,ph) sources: {3,7,8}

SELECT RSTREAM o.id, o.pressure, a.avgpress FROM outflow[NOW] o, (SELECT avg(i.pressure) as avgpress FROM inflow[RANGE 1 Hour] i) a WHERE o.pressure > a.avgpress AND o.temperature > 500;

QoS: {ACQUISITION RATE >= 5s Minimize; DELIVERY TIME <= 30s}

MANCHESTER

Different Sites have Different Cost

- Different operators
- Different sensors used
- Different sized windows
- Aggregated and raw data
- Different number of tuples processed
- Different sizes of tuples

Example Costs

- Acquiring outflow cost more than inflow
 - Temperature and Pressure vs just
 Pressure
- Window on inflow cost more
 - Tuples held for one hour.
 - Affects mainly memory to hold 1 hours of tuples

School of Computer Science

Multiple contrasting Optimization Goal

- Traditional optimizer just consider duration.
- Sensor networks must be optimized for:
 - Memory
 - Duration
 - Energy
- Desiderata trade of against each other.
 - Actions which lower one cost often increase the others.

Memory Cost

- In Nesc all memory preallocated.
 - With only 4K Configuration EEPROM every byte counts
- Costs include
 - Overhead for each operator
 - Memory for temporary variables
 - Sensed data
 - Count and sum to compute average
 - Data stored for later evaluations
 - Ex: Window with 1 hours worth of data
 - Data passed to next operator
 - Size of tuple * Number of tuples
 - Data stored for transmission
 - Size of a packet to send.

of Manchester

Decisions based on Memory

- Is there enough RAM?
 - Will a whole hours worth of tuples fit?
 - If not reduce window or increase acquisition rate
 - Optimizer picks Acquistion Rate of 6 seconds
 - Can operators be grouped together or must they be divided over several sites.
- Can data be stored for later transmission?
 - Example up to 10 acquires fit on site 3
 - Reduces radio overhead
 - Allows more than one tuple per packet

Operator Duration

- Overhead
- Cost of receiving input from previous operator
- Cost of any processing
 - Selecting correct tuples for window
 - Depends on size of winodw
 - Calculating Aggregates
 - Example count and sum or average
 - Evaluating predicates
 - Depends on complexity of predicate
 - Doing the join
- Preparing data for output
 - Number of tuples * complexity of expression

SP_ACQUIRE Duration

- SP_ACQUIRE
 - Acquire
 - Sum of duration cost of each sensor used
 - Number and types on sensor critical
 - Select
 - Depends on number of atomic expressions
 - Project
 - Sum of cost of each expression
 - Depends on number of atomic expression

Transmit Duration

- Receiving data from Child / Storage
- Overhead cost
- Transmitting Tuples
 - Number of tuples
 - Size of each tuple
 - Number and type of attributes
 - Size of the packets
 - Number of tuples combined in a packet

MANCHESTER 1824

Decision based on Duration

- Can the delivery time be met?
- Is there enough time to do everything required before next data arrives?
 - Does acquisition rate have to be increased?
- Can data be stored for later transmission?
 - Maximum of 5 acquires (6 seconds each) can be delivered
- Selecting the fastest query plan.
 - Reduce the number of relay sites
- Determining when activity takes place
 - Especially coordinating radio traffic between sites
 - Keeping duration of radio slots to an absolute minimum.

Energy Cost

- Based on Duration
- Depends on which physical devices used
 - Sensors
 - Depends on type of sensor
 - CPU
 - Active, Idle (radio on), sleep
 - Radio
 - Receive Mode
 - Transmit Mode (depends on level)
 - Flash

Decisions based on Energy

- How long will the network last
 - Can acquisition rate decreased?
- Where to place operators
 - Balance work between motes as much as possible
- Select the most energy efficient query plan.
 - Decrease transmission cost by increasing the number of relay sites
 - Decreasing time radios are kept on to absolute minimum.
- Trade-off between lifetime and other Q.O.S.
 - Acquisition rate, delivery time, query accuracy
 - Store 5 acquires to save energy

Conclusions

- Cost models allow Sensor networks to be treated as distributed databases
 - Different operators on different sites
 - Each operator and site costs indepenently
- Optimizers can choose the best query plan
 - To fit the limited Mote capacities
 - To meet various Qualities of Service
 - Based on Memory, Duration and Cost